Amalgamated Worksheet # 1 Solutions

Various Artists

April 4, 2013

1 Mike Hartglass

For all exercises, V is a finite dimensional complex vector space

1.) Prove that if $T \in \mathcal{L}(V)$ has only one eigenvalue, then every vector $v \in V$ is a generalized eigenvector of T (*Hint*: Use the Jordan decomposition of T).

Solution Let n be the dimension of V and let λ be the only eigenvalue of T. Therefore, the Jordan decomposition of T results in the expression

$$V = \operatorname{Null}(T - \lambda I)^n.$$

Therefore, if $v \in V$, $v \in \text{Null}(T - \lambda I)^n$ so v is a generalized eigenvector of T.

2.) For this problem, suppose that S and T are operators on a finite dimensional complex vector space V.

a.) Suppose that ST is nilpotent. Prove that TS is nilpotent.

Solution: Suppose $(ST)^k = 0$. We note that

 $(TS)^{k+1} = TSTS \cdots TS(k+1 \text{ times}) = T(ST)^k S = T \cdot 0 \cdot S = 0$

so TS is nilpotent.

b.) Suppose S and T are nilpotent and ST = TS. Prove that S + T is nilpotent.

Solution: We recall the binomial theorem, which states that for complex numbers z and w and any positive integer j,

$$(z+w)^k = \sum_{j=0}^k \binom{k}{j} z^j w^{k-j}.$$

If you examine the proof of the binomial theorem, you will see that every step is true if x and y are replaced with linear operators which commute (commutativity is very important here!). To this end, assume that $S^m = 0$ and $T^n = 0$ for positive integers n and m, we note that:

$$(S+T)^{n+m} = \sum_{j=0}^{m+n} \binom{k}{j} S^j T^{m+n-j}.$$

If $j \ge m$ then $S^j = 0$, and if $j \le m$ then $m + n - j \ge n$ so $T^{m+n-j} = 0$. In any case, every term of the sum vanishes so ST is nilpotent.

c.) Suppose S and T are nilpotent. Must S + T be nilpotent? Give a proof or give a counterexample.

Solution This is false. To see this, let V be two-dimensional and $\beta = (v_1, v_2)$ a basis for V. Let S and T be the linear operators such that

$$\mathcal{M}_{\beta}(S) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 and $\mathcal{M}_{\beta}(T) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

It is easily seen that both matrices square to zero so S and T are nilpotent. Furthermore,

$$\mathcal{M}_{\beta}(S+T) = \left(\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right)$$

which is seen to square to the identity. Therefore, S + T is not nilpotent.

3.) Let V be an n-dimensional complex vector space and $T \in \mathcal{L}(V)$. Let $\lambda_1, ..., \lambda_m$ be the (distinct) eigenvalues of T (hence $m \leq n$). We know from class that if $U_k = \text{Null}(T - \lambda_k I)^n$, we have

$$V = U_1 \oplus \cdots \oplus U_m.$$

a.) Prove that each U_k is invariant under T.

Solution: Using that T commutes with both itself and $\lambda_k I$, we see that T commutes $T - \lambda_k I$ and hence with $(T - \lambda_k I)^n$. Let $v \in U_k$. This means $(T - \lambda_k I)^n v = 0$. Therefore

$$(T - \lambda_k I)^n T v = T(T - \lambda_k I)^n v = T(0) = 0$$

which implies $Tv \in U_k$. Therefore U_k is T invariant.

b.) Prove that $T - \lambda_k I$ restricted to U_k is nilpotent.

Solution: We first note that U_k is invariant under $T - \lambda_k I$ as it invariant under both T and $\lambda_k I$. If $v \in U_k$, then by definition $v \in \text{Null}(T - \lambda_k I)^n$, so $(T - \lambda_k I)^n(v) = 0$.

This implies that $(T - \lambda_k I)^n$ is the zero operator on U_k so $(T - \lambda_k I)|_{U_k}$ is nilpotent.

c.) Consider $E_i \in \mathcal{L}(V)$ defined by $E_i(v_1+v_2+\cdots+v_m) = v_i$ whenever $v_k \in U_k$ (notice that this is well defined by the direct sum decomposition). Prove that T commutes with each E_i .

Solution: Let v in V and write v uniquely as

$$v = v_1 + \cdots + v_m$$
 for $v_i \in U_i$.

Then we have $TE_i(v) = T(v_i)$ and

$$E_i T(v) = E_i (T(v_1) + \dots + T(v_m)) = T(v_i)$$

where we have used $T(v_k) \in U_k$ (part a.)). This shows $TE_i = E_i T$.

d.) Use the $E'_i s$ to show that we can write T = D + N where D is diagonalizable and N is nilpotent with DN = ND.

solution: We first start with two easy lemmas:

Lemma 1: $\sum_{i=1}^{m} E_i = I$

Proof: Let $v \in V$ and as in part c.), write $v = v_1 + \cdots + v_m$ with $v_i \in U_i$. Then we have

$$\left(\sum_{i=1}^{m} E_{i}\right)(v) = \sum_{i=1}^{m} E_{i}(v) = \sum_{i=1}^{m} v_{i} = v$$

Lemma 2: $E_i E_j = 0$ if $i \neq j$.

Proof: Writing $v = v_1 + \cdots + v_m$ as above, we have

$$E_i E_j(v) = E_i(v_j) = 0$$

Now we move on to the problem. We define

$$D = \sum_{i=1}^{m} \lambda_i E_i \text{ and } N = \sum_{i=1}^{m} (T - \lambda_i I) E_i = \sum_{i=1}^{m} (T E_i - \lambda_i E_i)$$

We first see that

$$N + D = \sum_{i=1}^{m} (TE_i - \lambda_i E_i + \lambda_i E_i) = T \cdot \left(\sum_{i=1}^{m} E_i\right) = T \cdot I = T.$$

It is easily verified that $E_i^2 = E_i$. Using this, lemma 2, and part c.) above, we see from the expressions of D and N that D and N must commute with each other.

If $v \in U_k$ then by definition,

$$D(v) = \sum_{i=1}^{m} \lambda_i E_i(v) = \lambda_k E_k(v) = \lambda_k v$$

so v is an eigenvector of D. Finding bases of each U_k and concatenating them to form a basis for V produces a basis of V consisting of eigenvectors of D. Therefore D is diagonalizable.

Finally, the fact that $E_i^2 = E_i$, along with lemma 2 and part c.) above, implies that

$$N^n = \sum_{i=1}^m (T - \lambda_i I)^n E_i.$$

Writing $v = v_1 + \cdots + v_m$ as above, we see that

$$(T - \lambda_i I)^n E_i(v) = (T - \lambda_i I)^n (v_i) = 0$$

since $v_i \in U_i = \text{Null}(T - \lambda_i I)^n$. Therefore each $(T - \lambda_i I)^n E_i$ is zero, implying $N^n = 0$ so N is nilpotent.

2 Peyam Tabrizian

Problem 1:

Find all the generalized eigenvectors of $T \in \mathcal{L}(\mathbb{R}^3)$ defined by:

$$T(x, y, z) = (x + y + z, y + z, z)$$

Solution: The matrix A with respect to the standard basis $\{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ of \mathbb{R}^3 is:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Since A is upper-triangular, by Prop. 5.18, A has only one eigenvalue, $\lambda = 1$.

Now use the following method:

Method: To find all the generalized eigenvectors of T, for each eigenvalue λ you found, find a basis for $Nul((T - \lambda I)^n)$, where n = dim(V).

Here, all we need to find is a basis for $Nul((A - I)^3)$.

But:

$$(A - I)^{3} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}^{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hence:

$$Nul((A - I)^{3}) = Nul \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = Span \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Which means that:

$$Nul((T-I)^3) = Span \{(1,0,0), (0,1,0), (0,0,1)\} = \mathbb{R}^3$$

Hence **any** vector in \mathbb{R}^3 is a generalized eigenvector of T.

Problem 2:

Suppose that $T \in \mathcal{L}(V)$ has *n* distinct eigenvalues (where n = dim(V)), and that $S \in \mathcal{L}(V)$ has the same eigenvectors as *T* (but not necessarily with the same eigenvalues). Show that ST = TS.

Solution: Let $\lambda_1, \dots, \lambda_n$ be the distinct eigenvalues of T and let v_1, \dots, v_n be the corresponding eigenvectors of T, so $T(v_i) = \lambda_i v_i$ (for $i = 1, \dots n$). However, since v_1, \dots, v_n are also eigenvectors of S (by assumption), we know that $S(v_i) = \mu_i v_i$ for (possibly different) eigenvalues μ_i ($i = 1, \dots, n$).

Then by Theorem 5.6, we know that the list (v_1, \dots, v_n) is linearly independent. Hence (v_1, \dots, v_n) is a linearly independent list of n vectors in the n-dimensional vector space V. Hence (v_1, \dots, v_n) spans V.

Now let v be an arbitrary vector in V. We want to show ST(v) = TS(v).

However, since $v \in V$ and (v_1, \dots, v_n) spans V, we know that there exist scalars a_1, \dots, a_n such that $v = a_1v_1 + \dots + a_nv_n$.

Then:

$$ST(v) = ST(a_1v_1 + \dots + a_nv_n)$$

= $S(a_1T(v_1) + \dots + a_nT(v_n))$
= $S(a_1\lambda_1v_1 + \dots + a_n\lambda_nv_n)$
= $a_1\lambda_1S(v_1) + \dots + a_n\lambda_nS(v_n)$
= $a_1\lambda_1\mu_1v_1 + \dots + a_n\lambda_n\mu_nv_n$

But also:

$$TS(v) = TS(a_1v_1 + \dots + a_nv_n)$$

= $T(a_1S(v_1) + \dots + a_nS(v_n))$
= $T(a_1\mu_1v_1 + \dots + a_n\mu_nv_n)$
= $a_1\mu_1T(v_1) + \dots + a_n\mu_nT(v_n)$
= $a_1\mu_1\lambda_1v_1 + \dots + a_n\mu_n\lambda_nv_n$
= $a_1\lambda_1\mu_1v_1 + \dots + a_n\lambda_n\mu_nv_n$
= $ST(v)$

Note: It would also have been enough to show that $ST(v_i) = TS(v_i)$ for all $i = 1, \dots, n$ and then invoked the uniqueness-part of the linear extension lemma.

Problem 3:

Show that if V is a vector space over \mathbb{C} and if 0 is the only eigenvalue of $T \in \mathcal{L}(V)$, then T is nilpotent

Solution: By theorem 8.23, V can be expressed as a direct sum of the generalized eigenspaces of T (*). However, since T has only one eigenvalue (namely 0), T has only one generalized eigenspace (the one corresponding to the eigenvalue $\lambda = 0$), and hence by (*), we have that V equals to the generalized eigenspace of T corresponding to $\lambda = 0$. However, by Corollary 8.7, that eigenspace is precisely $Nul(T^n)$, where n = dim(V). Therefore, we have $V = Nul(T^n)$.

Now if $v \in V$, then $v \in Nul(T^n)$, so $T^n(v) = 0$, and since v was arbitrary, we get $T^n = 0$. That is, T is nilpotent.

Problem 4:

Show that if $Nul(T-\lambda I) = Nul((T-\lambda I)^2)$ for all λ , then V has a basis of eigenvectors of T (that is, T, is *diagonalizable*)

From Corollary 8.25, we know that V has a basis (v_1, \dots, v_n) consisting of generalized eigenvectors of T. Let $\lambda_1, \dots, \lambda_n$ be the corresponding eigenvalues.

<u>Goal</u>: Show that each v_i is actually an eigenvector of T $(i = 1, \dots, n)$

Fix $i = 1, \cdots, n$.

Our assumption with $\lambda = \lambda_i$ implies that $Nul(T - \lambda_i I) = Nul((T - \lambda_i I)^2)$, and hence by Prop 8.5 (with $T - \lambda_i I$ instead of T) implies that:

$$Nul(T - \lambda_i I) = Nul((T - \lambda_i I)^2) = \cdots = Nul((T - \lambda_i I)^n)$$

Now since v_i is a generalized eigenvector corresponding to λ_i , v_i is in $Nul((T - \lambda_i I)^n)$ by Corollary 8.7. Hence by what we've just shown, $v_i \in Nul((T - \lambda_i I))$, that is v_i is an **eigenvector** of T corresponding to λ_i .

Hence (v_1, \dots, v_n) is actually a basis of V consisting of eigenvectors of T (and not just generalized eigenvectors)

Problem 5:

(if time permits) Suppose $T \in \mathcal{L}(V)$

- (a) Show that $T(T \lambda I)^n = (T \lambda I)^n T$.
- (b) Use (a) to show that $(T \lambda I)(T \mu I)^n = (T \mu I)^n (T \lambda I)$.

Solution:

(a) By the binomial formula, we have:

$$\begin{split} T(T - \lambda I)^n &= a_i T \left(\sum_{i=0}^n T^i (-\lambda I)^{n-i} \right) \\ &= \sum_{i=0}^n a_i T T^i (-\lambda I)^{n-i} \\ &= \sum_{i=0}^n a_i T^{i+1} (-\lambda)^{n-i} I \\ &= \sum_{i=0}^n a_i (-\lambda)^{n-i} T^{i+1} I \\ &= \sum_{i=0}^n a_i (-\lambda)^{n-i} T^{i+1} \\ &= \sum_{i=0}^n a_i (-\lambda)^{n-i} T^{n-i} T^{i+1} \\ &= \sum_{i=0}^n a_i (-\lambda I)^{n-i} T^i T \\ &= \left(\sum_{i=0}^n a_i (-\lambda I)^{n-i} T^i \right) T \\ &= (a_0 (-\lambda I)^n + a_1 (-\lambda I)^{n-1} T + \dots + a_{n-1} (-\lambda I) T^{n-1} + a_n T^n) T \\ &= (a_0 T^n + a_{n-1} (-\lambda I) T^{n-1} + \dots + a_{n-1} (-\lambda I)^{n-1} T + a_n (-\lambda I)^n) T \\ &= (a_0 T^n + a_{n-1} (-\lambda I) T^{n-1} + \dots + a_{n-1} (-\lambda I)^{n-1} T + a_n (-\lambda I)^n) T \\ &= (a_0 T^n + a_{n-1} (-\lambda I) T^{n-1} + \dots + a_{n-1} (-\lambda I)^{n-1} T + a_n (-\lambda I)^n) T \\ &= (T^n + a_{n-1} (-\lambda I) T^{n-1} + \dots + a_{n-1} (-\lambda I)^{n-1} T + a_n (-\lambda I)^n) T \\ &= (T^n + a_{n-1} (-\lambda I) T^{n-1} + \dots + a_{n-1} (-\lambda I)^{n-1} T + a_n (-\lambda I)^n) T \\ &= (T^n + a_{n-1} (-\lambda I) T^{n-1} + \dots + a_{n-1} (-\lambda I)^{n-1} T + a_n (-\lambda I)^n) T \\ &= (T^n + a_{n-1} (-\lambda I) T^{n-1} + \dots + a_{n-1} (-\lambda I)^{n-1} T + a_n (-\lambda I)^n) T \end{split}$$

$$= \left(\sum_{i=0}^{n} a_i (-\lambda I)^i T^{n-i}\right) T$$
$$= (-\lambda I + T)^n T$$
$$= (T - \lambda I)^n T$$

(b)

$$(T - \lambda I)(T - \mu I)^n = T(T - \mu I)^n - \lambda I(T - \mu I)^n$$
$$\stackrel{(a)}{=} (T - \mu I)^n T - \lambda (T - \mu I)^n$$
$$= (T - \mu I)^n T - (T - \mu I)^n (\lambda I)$$
$$= (T - \mu I)^n (T - \lambda I)$$