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1 Mike Hartglass

For all exercises, V is a finite dimensional complex vector space

1.) Prove that if T ∈ L(V ) has only one eigenvalue, then every vector v ∈ V is a
generalized eigenvector of T (Hint : Use the Jordan decomposition of T ).

Solution Let n be the dimension of V and let λ be the only eigenvalue of T . Therefore,
the Jordan decomposition of T results in the expression

V = Null(T − λI)n.

Therefore, if v ∈ V , v ∈ Null(T − λI)n so v is a generalized eigenvector of T .

2.) For this problem, suppose that S and T are operators on a finite dimensional
complex vector space V .

a.) Suppose that ST is nilpotent. Prove that TS is nilpotent.

Solution: Suppose (ST )k = 0. We note that

(TS)k+1 = TSTS · · ·TS(k + 1 times) = T (ST )kS = T · 0 · S = 0

so TS is nilpotent.

b.) Suppose S and T are nilpotent and ST = TS. Prove that S + T is nilpotent.

Solution: We recall the binomial theorem, which states that for complex numbers z
and w and any positive integer j,

(z + w)k =
k∑
j=0

(
k

j

)
zjwk−j.
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If you examine the proof of the binomial theorem, you will see that every step is true
if x and y are replaced with linear operators which commute (commutativity is very
important here!). To this end, assume that Sm = 0 and T n = 0 for positive integers
n and m, we note that:

(S + T )n+m =
m+n∑
j=0

(
k

j

)
SjTm+n−j.

If j ≥ m then Sj = 0, and if j ≤ m then m+ n− j ≥ n so Tm+n−j = 0. In any case,
every term of the sum vanishes so ST is nilpotent.

c.) Suppose S and T are nilpotent. Must S + T be nilpotent? Give a proof or give a
counterexample.

Solution This is false. To see this, let V be two-dimensional and β = (v1, v2) a basis
for V . Let S and T be the linear operators such that

Mβ(S) =

(
0 1
0 0

)
and Mβ(T ) =

(
0 0
1 0

)
.

It is easily seen that both matrices square to zero so S and T are nilpotent. Further-
more,

Mβ(S + T ) =

(
0 1
1 0

)
which is seen to square to the identity. Therefore, S + T is not nilpotent.

3.) Let V be an n−dimensional complex vector space and T ∈ L(V ). Let λ1, ..., λm
be the (distinct) eigenvalues of T (hence m ≤ n). We know from class that if Uk =
Null(T − λkI)n, we have

V = U1 ⊕ · · · ⊕ Um.

a.) Prove that each Uk is invariant under T .

Solution: Using that T commutes with both itself and λkI, we see that T commutes
T − λkI and hence with (T − λkI)n. Let v ∈ Uk. This means (T − λkI)nv = 0.
Therefore

(T − λkI)nTv = T (T − λkI)nv = T (0) = 0

which implies Tv ∈ Uk. Therefore Uk is T invariant.

b.) Prove that T − λkI restricted to Uk is nilpotent.

Solution: We first note that Uk is invariant under T − λkI as it invariant under both
T and λkI. If v ∈ Uk, then by definition v ∈ Null(T − λkI)n, so (T − λkI)n(v) = 0.



This implies that (T − λkI)n is the zero operator on Uk so (T − λkI)|Uk
is nilpotent.

c.) Consider Ei ∈ L(V ) defined by Ei(v1+v2+· · ·+vm) = vi whenever vk ∈ Uk (notice
that this is well defined by the direct sum decomposition). Prove that T commutes
with each Ei.

Solution: Let v in V and write v uniquely as

v = v1 + · · · vm for vi ∈ Ui.

Then we have TEi(v) = T (vi) and

EiT (v) = Ei(T (v1) + · · ·+ T (vm)) = T (vi)

where we have used T (vk) ∈ Uk (part a.)). This shows TEi = EiT .

d.) Use the E ′is to show that we can write T = D+N where D is diagonalizable and
N is nilpotent with DN = ND.

solution: We first start with two easy lemmas:

Lemma 1 :
∑m

i=1Ei = I

Proof : Let v ∈ V and as in part c.), write v = v1 + · · · + vm with vi ∈ Ui. Then we
have (

m∑
i=1

Ei

)
(v) =

m∑
i=1

Ei(v) =
m∑
i=1

vi = v

Lemma 2 : EiEj = 0 if i 6= j.

Proof : Writing v = v1 + · · ·+ vm as above, we have

EiEj(v) = Ei(vj) = 0

Now we move on to the problem. We define

D =
m∑
i=1

λiEi and N =
m∑
i=1

(T − λiI)Ei =
m∑
i=1

(TEi − λiEi)

We first see that

N +D =
m∑
i=1

(TEi − λiEi + λiEi) = T ·

(
m∑
i=1

Ei

)
= T · I = T.



It is easily verified that E2
i = Ei. Using this, lemma 2, and part c.) above, we see

from the expressions of D and N that D and N must commute with each other.

If v ∈ Uk then by definition,

D(v) =
m∑
i=1

λiEi(v) = λkEk(v) = λkv

so v is an eigenvector of D. Finding bases of each Uk and concatenating them to form
a basis for V produces a basis of V consisting of eigenvectors of D. Therefore D is
diagonalizable.

Finally, the fact that E2
i = Ei, along with lemma 2 and part c.) above, implies that

Nn =
m∑
i=1

(T − λiI)nEi.

Writing v = v1 + · · · vm as above, we see that

(T − λiI)nEi(v) = (T − λiI)n(vi) = 0

since vi ∈ Ui = Null(T −λiI)n. Therefore each (T −λiI)nEi is zero, implying Nn = 0
so N is nilpotent.

2 Peyam Tabrizian

Problem 1:

Find all the generalized eigenvectors of T ∈ L(R3) defined by:

T (x, y, z) = (x+ y + z, y + z, z)

Solution: The matrixA with respect to the standard basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
of R3 is:

A =

1 1 1
0 1 1
0 0 1


Since A is upper-triangular, by Prop. 5.18, A has only one eigenvalue, λ = 1.

Now use the following method:



Method: To find all the generalized eigenvectors of T , for each eigenvalue λ you
found, find a basis for Nul((T − λI)n), where n = dim(V ).

Here, all we need to find is a basis for Nul((A− I)3).

But:

(A− I)3 =

0 1 1
0 0 1
0 0 0

3

=

0 0 0
0 0 0
0 0 0


Hence:

Nul
(
(A− I)3

)
= Nul

0 0 0
0 0 0
0 0 0

 = Span


1

0
0

 ,
0

1
0

 ,
0

0
1


Which means that:

Nul((T − I)3) = Span {(1, 0, 0), (0, 1, 0), (0, 0, 1)} = R3

Hence any vector in R3 is a generalized eigenvector of T .

Problem 2:

Suppose that T ∈ L(V ) has n distinct eigenvalues (where n = dim(V )), and that S ∈
L(V ) has the same eigenvectors as T (but not necessarily with the same eigenvalues).
Show that ST = TS.

Solution: Let λ1, · · · , λn be the distinct eigenvalues of T and let v1, · · · , vn be the

corresponding eigenvectors of T , so T (vi) = λivi (for i = 1, · · ·n). However, since

v1, · · · , vn are also eigenvectors of S (by assumption), we know that S(vi) = µivi for

(possibly different) eigenvalues µi (i = 1, · · · , n).

Then by Theorem 5.6, we know that the list (v1, · · · , vn) is linearly independent.
Hence (v1, · · · , vn) is a linearly independent list of n vectors in the n−dimensional
vector space V . Hence (v1, · · · , vn) spans V .

Now let v be an arbitrary vector in V . We want to show ST (v) = TS(v) .



However, since v ∈ V and (v1, · · · , vn) spans V , we know that there exist scalars
a1, · · · , an such that v = a1v1 + · · ·+ anvn.

Then:

ST (v) =ST (a1v1 + · · ·+ anvn)

=S(a1T (v1) + · · ·+ anT (vn))

=S(a1λ1v1 + · · ·+ anλnvn)

=a1λ1S(v1) + · · ·+ anλnS(vn)

=a1λ1µ1v1 + · · ·+ anλnµnvn

But also:

TS(v) =TS(a1v1 + · · ·+ anvn)

=T (a1S(v1) + · · ·+ anS(vn))

=T (a1µ1v1 + · · ·+ anµnvn)

=a1µ1T (v1) + · · ·+ anµnT (vn)

=a1µ1λ1v1 + · · ·+ anµnλnvn

=a1λ1µ1v1 + · · ·+ anλnµnvn

=ST (v)

Note: It would also have been enough to show that ST (vi) = TS(vi) for all i =
1, · · · , n and then invoked the uniqueness-part of the linear extension lemma.

Problem 3:

Show that if V is a vector space over C and if 0 is the only eigenvalue of T ∈ L(V ),
then T is nilpotent

Solution: By theorem 8.23, V can be expressed as a direct sum of the generalized
eigenspaces of T (∗). However, since T has only one eigenvalue (namely 0), T has
only one generalized eigenspace (the one corresponding to the eigenvalue λ = 0), and
hence by (∗), we have that V equals to the generalized eigenspace of T corresponding
to λ = 0. However, by Corollary 8.7, that eigenspace is precisely Nul(T n), where

n = dim(V ). Therefore, we have V = Nul(T n) .



Now if v ∈ V , then v ∈ Nul(T n), so T n(v) = 0, and since v was arbitrary, we get

T n = 0 . That is, T is nilpotent.

Problem 4:

Show that if Nul(T−λI) = Nul((T−λI)2) for all λ, then V has a basis of eigenvectors
of T (that is, T , is diagonalizable)

From Corollary 8.25, we know that V has a basis (v1, · · · , vn) consisting of generalized
eigenvectors of T . Let λ1, · · · , λn be the corresponding eigenvalues.

Goal: Show that each vi is actually an eigenvector of T (i = 1, · · · , n)

Fix i = 1, · · · , n.

Our assumption with λ = λi implies that Nul(T −λiI) = Nul((T −λiI)2), and hence
by Prop 8.5 (with T − λiI instead of T ) implies that:

Nul(T − λiI) = Nul((T − λiI)2) = · · · = Nul((T − λiI)n)

Now since vi is a generalized eigenvector corresponding to λi, vi is in Nul((T −λiI)n)
by Corollary 8.7. Hence by what we’ve just shown, vi ∈ Nul((T − λiI)), that is vi is
an eigenvector of T corresponding to λi.

Hence (v1, · · · , vn) is actually a basis of V consisting of eigenvectors of T (and not
just generalized eigenvectors)

Problem 5:

(if time permits) Suppose T ∈ L(V )

(a) Show that T (T − λI)n = (T − λI)nT .

(b) Use (a) to show that (T − λI)(T − µI)n = (T − µI)n(T − λI).

Solution:



(a) By the binomial formula, we have:

T (T − λI)n = aiT

(
n∑
i=0

T i(−λI)n−i

)

=
n∑
i=0

aiTT
i(−λI)n−i

=
n∑
i=0

aiT
i+1(−λ)n−iI

=
n∑
i=0

ai(−λ)n−iT i+1I

=
n∑
i=0

ai(−λ)n−iT i+1

=
n∑
i=0

ai(−λ)n−iIn−iT i+1

=
n∑
i=0

ai(−λI)n−iT iT

=

(
n∑
i=0

ai(−λI)n−iT i

)
T

=
(
a0(−λI)n + a1(−λI)n−1T + · · ·+ an−1(−λI)T n−1 + anT

n
)
T

=
(
anT

n + an−1(−λI)T n−1 + · · ·+ a1(−λI)n−1T + a0(−λI)n
)
T

=
(
a0T

n + a1(−λI)T n−1 + · · ·+ an−1(−λI)n−1T + an + (−λI)n
)
T

(This follows because actually a0 = an, a1 = an−1, etc., by looking at the formula for ai)

=

(
n∑
i=0

ai(−λI)iT n−i

)
T

= (−λI + T )nT

= (T − λI)nT

(b)

(T − λI)(T − µI)n = T (T − µI)n − λI(T − µI)n

(a)
= (T − µI)nT − λ(T − µI)n

= (T − µI)nT − (T − µI)n(λI)

= (T − µI)n(T − λI)


